

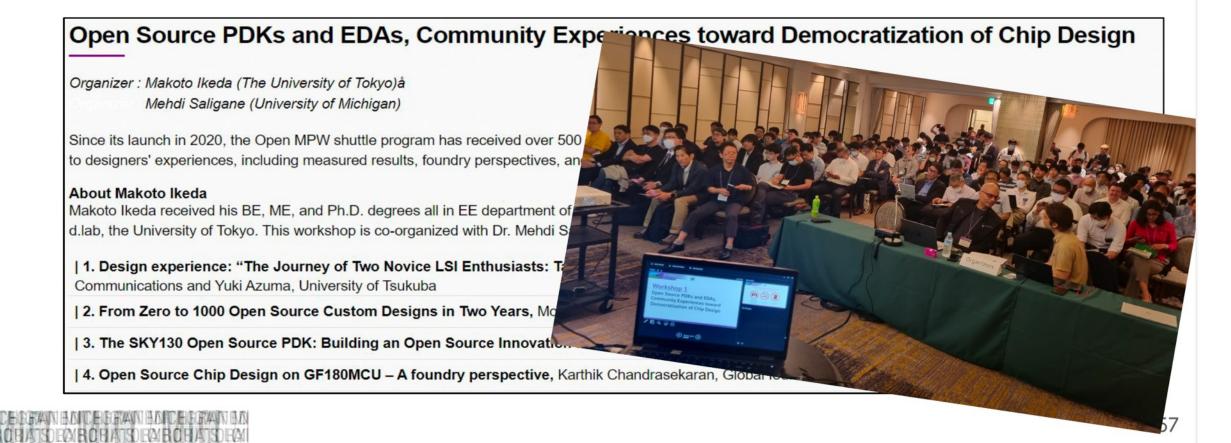
アジェンダ

- ISHI会紹介(新規の人が多い場合、利用)
 - オープンソース半導体(オープンソースシリコン)について
 - ISHI会について
 - ISHI会の活動
- 今日のお題(雑談ネタ)

オープンソース半導体(オープンソースシリコン)について

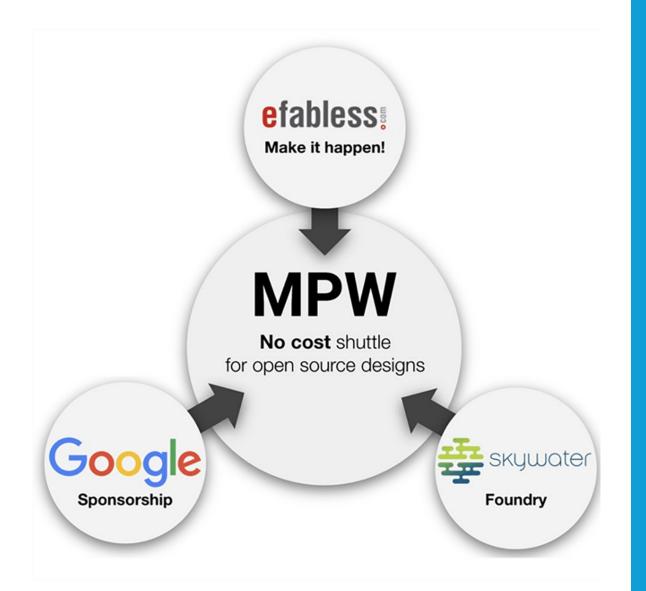
オープンソース半導体・ タイムライン

- 2018: DARPA (国防高等研究計画局) OpenIDEA プログラム
 \$11.3M grant to UC San Diego for "OpenROAD" project
- 2020: Google/efabless/SkyWater OpenMPW プログラムスタート
- 2022: Global Foundries が OpenMPW プログラムに参加
- 2023:独) iHP (130nm/SiGe) が PDK のオープン化を宣言
 Free Silicon Fundation (FSI) が、欧州の半導体産業の競争力、革新性、教育、 独立性、サイバー耐性、環境持続可能性などに貢献できると主張
- 2023: Open PDKの管理を Chips Alliance がサポート



• 日本での動き

- 2023年:ロジックリサーチ社の主催でオープンソースEDAフォーラムが開催される
 - 2023年6月:第三回よりハイブリット開催
 - 2024年7月:オープンソースEDA研究会として始動
- 2023年5月:滋賀県立大学の土谷先生主導でコミュニティー:ISHI会が発足
 - 2023年12月:ISHI会主導でOpenMPW GF-1にグループ投稿
 - 2023-2024年: IEEE SSCSのChipathon2023に土谷先生や熊本大学の久保木先生がリーダーとなって、日本チームを 結成して投稿
 - 2024年5月:2014年より金沢大学の秋田先生が主導してたMakeLSI:がISHI会に合流して、統合された
- 2024年5月:産総研主導で産業界団体:OpenSUSIが発足
 - https://www.nikkei.com/article/DGXZQOUC228690S4A420C2000000/



180 Attendees!! Record attendance among all workshops at VLSI Symposium

オープンソース半導体 ~OpenMPWとは?~

- 1. オープンソースの設計ツール (OpenEDA)にて設計。設計環境やスクリプトを公開することが可能であること、第三者による検証・改良・複製により、コミュニティにて共有できること。
- オープンソースのプロセス情報 (OpenPDK)にて設計。設計資産(回路 図・GDSII)やソースファイルを公開す ることが可能であること、第三者による 検証・改良・複製により、コミュニティ にて共有できること。
- 3. 上記1、2で設計したオープンソース設計チップを製造するファブ・サービスが存在し、設計したハードウェアの動作を検証できること。

なぜ、オープンソース半導体なのか?

- 半導体設計教育の危機
 - 電気電子課程への進学者の減少。VLSI教育にかかるソフトウェアのコスト高。EDAサーバーの保守・更新にかかる経費増等、教育側のコスト負荷が大きすぎる。
- チップ設計者の作業効率向上
 - オープンソース化より、ハードウェア設計は多くの恩恵をオープンソースソフトウェア と同様に受けることができる。
- 半導体産業の衰退=経済と安全保障において国家的な脅威
 - 偽造電子機器は、数十億ドル規模の闇市場が存在し、米国国防総省が購入する予備電子 部品の推定 15% が偽造品であり、信頼性と安全性の両方を脅かしていると報告されて いる
 - →半導体人材育成が喫緊の課題

ISHI会について

ISHI会とは?

スの牛取けレーマ※担し+One on MDIM/One on Multi Direient IMefew)け Conclub上がFfeblese

半導体を作ってみたい 初心者(特に半導体業界外の人)を支える

コミュニティー

• 今後の活動方針としては、他分野の人たちを巻き込んで半導体(ASIC/LSI/IC)分野に革命を起こすという方針で、他分野向けの超初心者向けハンズオンセミナーや専門家向けの濃い内容の勉強会などのイベントを開催したり、チームを作ってOpenMPWシャトルや世界のChipathonに挑戦したり、Maker Faireなどのイベントへの参加をしていきたいと思いますので、よろしくお願いいたします。

「やったことがある」を作る

オープンソース半導体でも「Make:ムーブメント(オープンハードウェア)」レベルのビックウェーブを起こすため

- Make:時代に立ち上がった企業
 - ハードウェアとは無縁のソフトウェア企業などの中から「社内Make:開発部」みたいなのが立ち上がり、そこから派生した
 - 「どこで知識を身に着けてきたか?」
 - Make:の流れの中にあるオープンハードウェア
 - 「ある程度まとまった数の技術者が生まれた」
 - ハードウェアを絡めた事業がどこの会社でも 出来るようになった
 - 「事業として成功させる」
 - 「参入したい側の業界・業務知識と半導体業界の業界・業務知識の両方を持った仲介者」 が必要

Lチカ動画: 二コ動でのコメント

- ☑ こっから?
- ☑ 二コ技界のTOKIO
- ☑ ゲートの無駄遣い
- ☑ ここから!!?
- ☑ ひでえ、勿体ない使い方wwwww
- ☑ マジかよ。レジストレベルの設計とか ガチすぎる。
- ☑ 無駄遣い過ぎるだろw
- ☑ 贅沢というかなんというか
- ☑ え?まじでここからかよ」wwww」」
- ☑ IC版FusionPCB的なところが現れれば・・・
- ☑ (FPGAでは)いかんのか?
- ☑ 俺はFPGAで我慢することにする
- ☑ いや、そこまでは必要ないです
- ☑ 量産品すらFPGA使う時代に専用LSI・・・
- ☑ アマチュアはFPGAで良いんだよなぁ・・・w

「集積回路=すごいことをやるためのもの」という意識

Interface Device Laboratory, Kanazawa University http://ifdl.jp/

ISHI会グランドデザイン

新規分野を開拓したいけ どどうすればよいのかわ からない

「みんなの経験をチップに!」

ASIC(LSI)化した いけど情報がない

ASIC(LSI)業界の現状 (閉塞感)

- NDAでなにもしゃべれない
- 最先端は札束の応酬
 - 若者が入ってこない

他業界の現状(限界感)

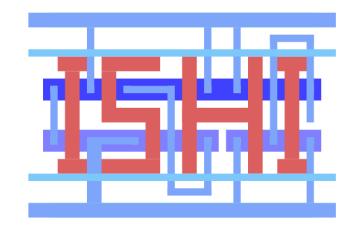
- 高速・小型・省電力の要求
 - 汎用チップ+ソフトでは限

_すべてがオープン!

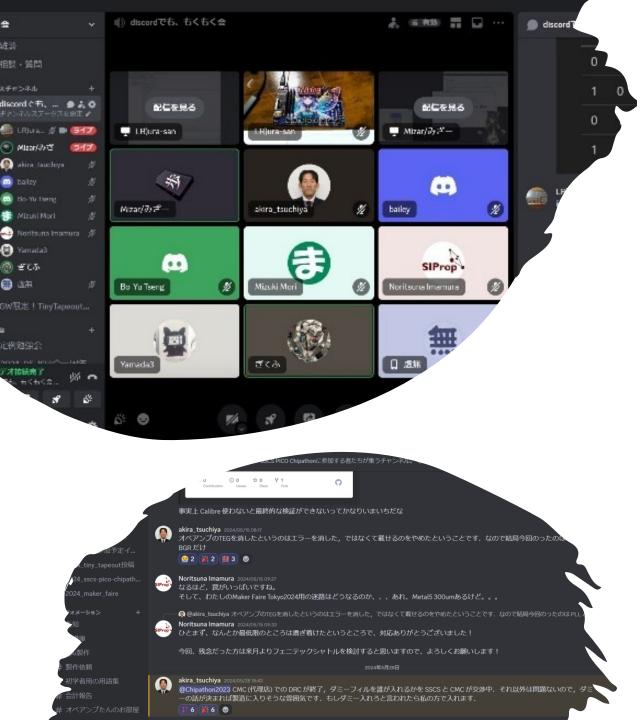
OpenMPWの登場!

コミュニティーの意義

- 成果の再利用が可能。Do It With Others(それ、みんなでやってみよう)の精神
- 日本の利点:地理的に物理的に集まりやすく、勉強会や合宿をやりやすい


ISHI会の意義

○ 他(多)分野の知識の統合により、今までになかった研究・開発への期待


ISHI会の情報

- メンバー数
 - 500名Over (20-30名ほど常にアクティブ)
- ホームページ
 - https://ishi-kai.org/
 - Discord上で活動中
 - O https://discord.gg/RwAWF5mZSR
- イベント告知(勉強会など)
 - https://ishikai.connpass.com/
 - 20~50名ほどが常時参加

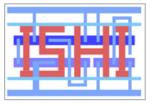
活動拠点: Discord

- •インターネット上を活動拠点
 - チャットアプリのDiscordを利用
 - •一般的な組織におけるオフィスに相当
- •主な活動
 - ・テーマに沿った各チャンネルによるディスカッション
 - ビデオチャットを利用した定例もくもく会
 - ・もくもく会:皆で一か所に集まり、各自 が独自のテーマで黙々と開発するという 会合

最初のイベント

- •ISHI会は2023年5月7日に開催された「第一回ハンズオンセミナー」を もって設立
 - 参加者は13名

♀ 〒155-0031 東京都世田谷区北沢2丁目3-3 第二友和ビル


15#**1**

2024/08/24 (土) 21:00~

7/100

2024年夏休み特別イベント「TinyTapeoutハンズオン」勉強

- Noritsuna Imamura
- (場所未定)

2024/08/11 (日) 13:00~

47/72

2024年08月イベント:初めての半導体設計・製造体験 for IS OpenMPW

- 👤 🔜 Noritsuna Imamura 他
- ♀ 東京都渋谷区道玄坂1丁目2番3号 渋谷フクラス

2024/08/04 (日) 13:00~

8/20

ゆるゆるイベント:フェニテックシャトル最終サポート雑談会

Noritsuna Imamura 他

定例イベント

- 対外向けの活動の一つ
- 月に1~2回,テーマに沿ったゲスト講師を呼んでの勉強会や初心者向けハンズオンセミナーを開催

展示:イベント

- コミュニティー系イベント
 - オープンソースカンファレンス
 - Kernel/VM探検隊
 - ・など
- ・ 業界系イベント
 - デジタル回路系: RISC-V Day Tokyo
 - 組み込み業界向け: EdgeTech+
 - ・など

□ README

することができます。

[A - F]

Analog Hard IP (Design Know

- AFE: Analog Front-End の略。セす。一般には、アンプやA/Dコンル向けのクロックが重畳された小振信号に復調するミックスドシグナチップでAFEを構成する場合がある。
- BGR: BandGap voltage Reference 抗に流すことで、温度によらずにする。回路安定点が2つあり適切
- <u>CDR</u>: Clock and Data Recovery の 分とデータ成分を切り分ける回路 変換(代表的な例として<u>8b10b</u>エン ことでクロックを抽出、抽出した
- <u>DLL</u>: Delay Locked Loopの略。タ れた遅延をデジタル的に選択する ったクロック信号を発生して、セ ックに対して複数の位相を持った して、外部クロックの位相の変化 生することは出来ない。
- LDO: Low Dropout Regulator の る電源を、外部から入力された電

他連携

- VLSI.jp
 - オープンソースシリコン関連の各種実地知見を文書化
 - 「半導体初学者むけ「半導体 設計で使われる用語集」」の 製作

シャトル投稿

Chipathonの運営母体

Chipathon の正式名称(?)は

IEEE SSCS "PICO" Open-Source Chipathon

ancing Technology Institute of Electrical and Electronics Engineers の略だが IEEE (アイ・トリプル・イー) で固有名詞 超巨大専門職団体. 学術だけでなく標準化などもやる

SSCS

Solid-State Circuits Society

IEEE内で専門分野を細分化したソサイエティの一つ. 集積回路の回路設計を専門に扱う

SSCS PICO Chipathon

SSCS の中の委員会

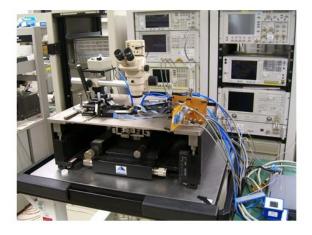
Technical Committee on Open-Source Ecosystem (TC-OSE) が運営する

SSCS PICO Program (Platform for IC Design Outreach) の活動の一つが "Chipathon"

(従来の) 集積回路設計の専門家集団 (SSCS) が オープンソースで広く多くの人がIC設計できるような環境 (PICO)を 作ろうとしていて、そのための実験的な活動が Chipathon Chipathon = Chip + Marathon

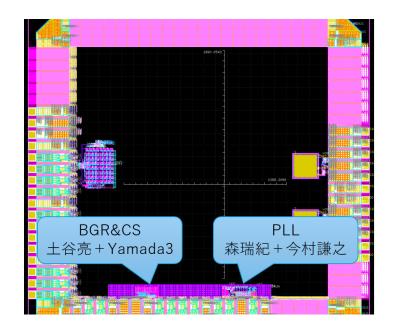
ちなみに

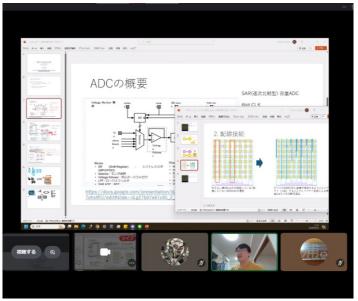
Boris Murmann: TC-OSE の Chair. (Stanford U.→ U. Hawaii, 教授) Sadayuki Yoshitomi (JR6PLB): TC-OSE member

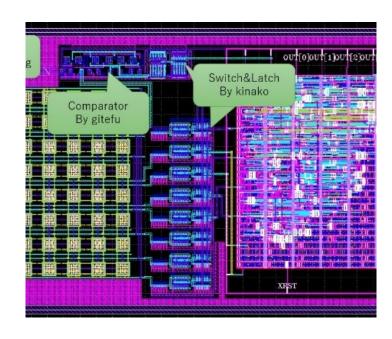

Chipathon

Chipathon2023

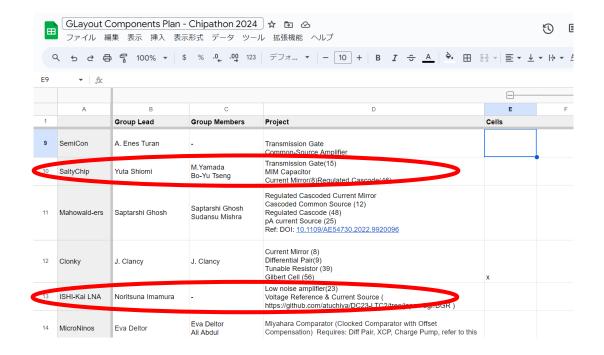
土谷先生の呼びかけに より日本チームを結成

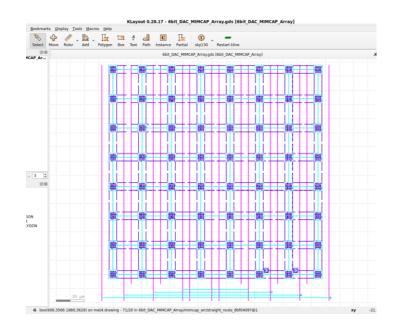

Chipathon 2023 がやりたいこと

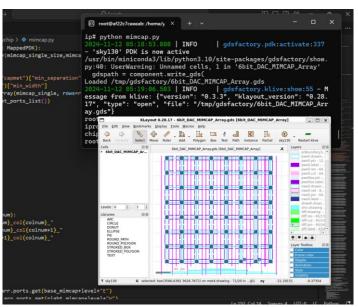

"lab bench on a chip" 測定器をチップ上に載せてしまおう



別の言い方をすると "AnalogDiscovery2 on a chip"

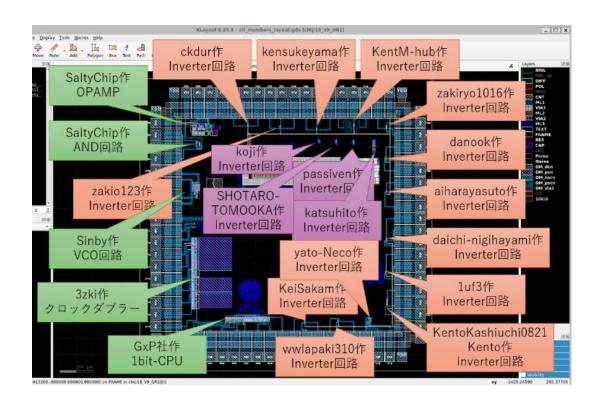


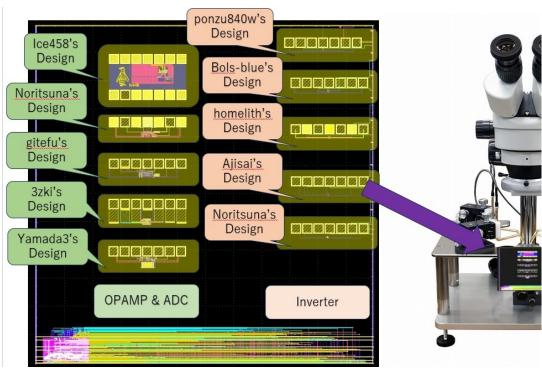

Chipathon2023 成果


- BGR+CSグループ
 - ・土谷先生とハンドルネーム: Yamada3氏
- PLLグループ
 - ・慶應大学のM1森さんと私
- ADCグループ
 - 久保木先生をリーダとしたCS系学部生やハードウェア系企業に勤める若手4名
- •現在ステータス
 - チップの製造完了

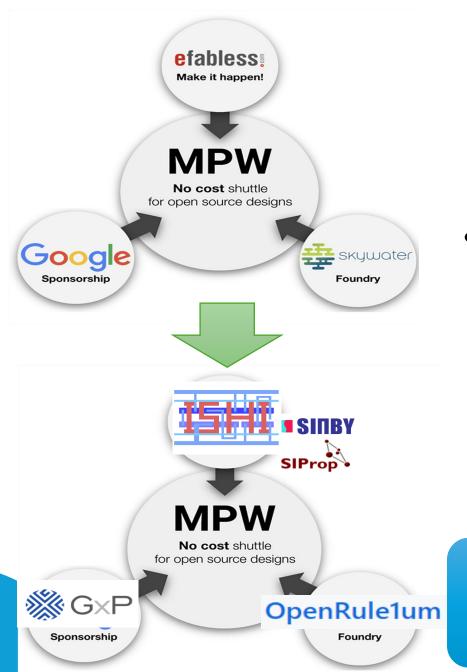
Chipathon2024

- 目標
 - Fifty-NiftyをベースにAIによる自動 生成を行う
- チーム構成
 - 2~3名の小規模チーム
- 日本チーム:2チーム
 - DAC: SaltyChipチーム
 - LNA: ISHI-Kai LNAチーム

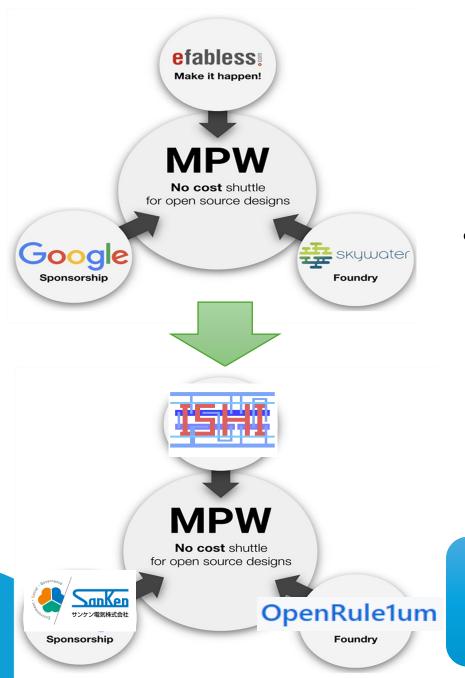




Chipathon2024: SaltyChipチーム

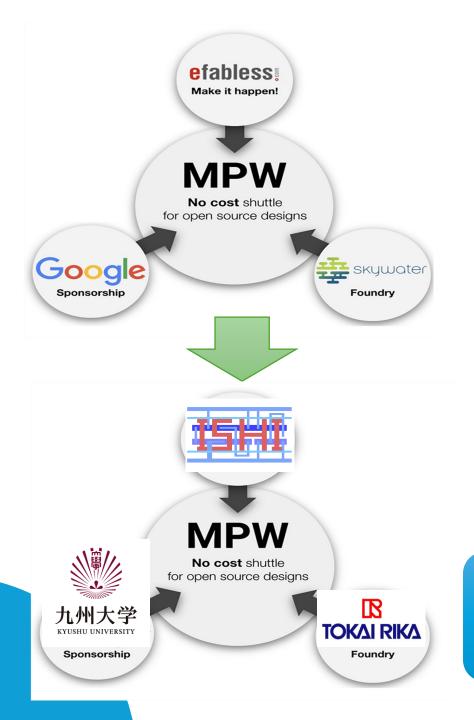

- 状況
 - ほぼ実装が完了し、LVSフェーズ

シャトル相乗り


- •オープンソースEDA&PDKとフリーシャトル
 - •誰でも参加可能
 - •デザインの共有が可能
 - •シャトルにさらに相乗りすることが可能
- 複数人によるシャトルの相乗りサポート
 - •インバータ回路を一日で回路設計~レイアウトまで行うハンズオン

日本発のOpenMPW!

- OpenMPW構造のシャトル
 - ・コミュニティー
 - eFabless社 ⇔ ISHI会+SINBY+SIProp
 - ・スポンサー
 - Google社 ⇔ GxP社
 - ファブ:
 - SkywaterPDK
 ⇔ OpenRule1umPDK

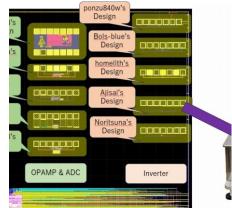

| ISHI会版OpenMPW-PTC06-1として開催!

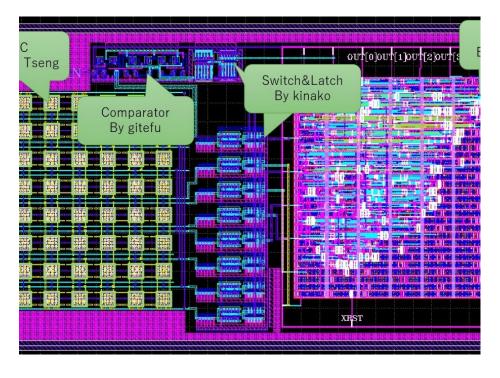
2025年のOpenMPW

- OpenMPW構造のシャトル
 - コミュニティー
 - eFabless社 ⇔ ISHI会
 - ・スポンサー
 - Google社 ⇔ サンケン電気社
 - ファブ:
 - SkywaterPDK
 ⇔ OpenRule1umPDK

ISHI会版OpenMPW-PTC06-2として開催!

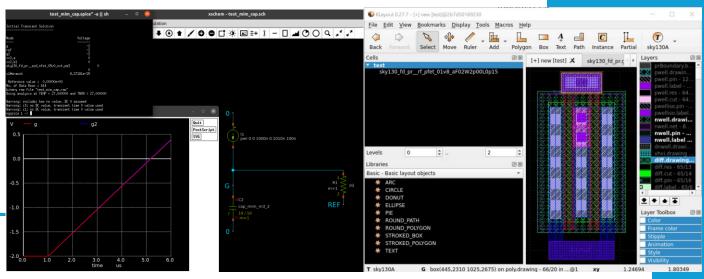
2025年のOpenMPW!

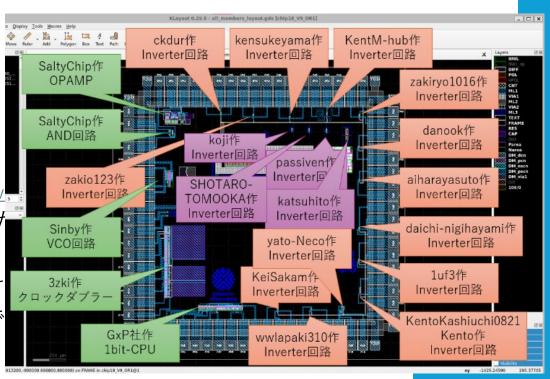

- OpenMPW構造のシャトル
 - コミュニティー
 - eFabless社 ⇔ ISHI会
 - ・スポンサー
 - Google社 ⇔ 九州大学
 - ファブ:
 - SkywaterPDK
 申 東海理化PDK


ISHI会版OpenMPW-TR10-2として開催!

シャトル: ISHI会シェアの実績

- 2023/12
 - OpenMPW GF-1シャトル
 - https://github.com/ishi-kai/ISHI-KAI_Multiple_Projects_OpenGFMPW-1/
- 2024/05
 - Chipathon2023
 - https://github.com/ishi-kai/Chipathon2023_ADC/tree/main/submit_version
 - https://github.com/atuchiya/DC23-LTC2/tree/japan-test/TOP
- 2024/08
 - ISHI会版OpenMPW PTC06-1シャトル(フェニテック)
 - https://github.com/ishi-kai/ISHI-KAI_Multiple_Projects_OpenMPW_PTC06-1
- 2024/10
 - ISHI会版OpenMPW TR10-1シャトル(東海理化)
 - https://github.com/ishi-kai/ISHI-KAI_Multiple_Projects_OpenMPW_TR10-1
- 2024/12
 - ISHI会版OpenMPW MF20-1シャトル(ミニマルファブ)
 - https://github.com/ishi-kai/ISHI-KAI_Multiple_Projects_OpenMPW_MF20-1





ハンズオンセミナー

- 知識ゼロから半導体設計の基礎がすべて学べる!
 - 一番簡単なインバーター回路のハンズオンセミナー
 - Xschemによる回路設計
 - トランジスタの組み合わせで機能を実現する作業
 - ngspiceによる回路特性シミュレーション
 - 上記の回路が正しく動作するかを検証する作業
 - klayoutによる回路デザイン
 - トランジスタを実際の半導体の上に配置する作業
 - 丸々1日の講習会となります
 - 講習会実施実績
 - https://ishikai.connpass.com/event/303102/
 - https://www.noritsuna.jp/download/ishi 20231110 3zki v
 - 参加者の声(半導体設計未経験者。電子工作をした あるレベル)
 - チップの設計体験によりすごく技術的な刺激を受け
 - 半導体は全く未知のものだったが理解できたことで 見を得ることが出来た

ハンズオンセミナー: ターゲット

- 初めての「半導体設計を体験してもらう」ことが目的
 - ソフトウェアやハードウェアの企業内に半導体設計者を増やす
- 参加者のモチベーション
 - 半導体って話をよく聞くようになったので、具体的に知りたい!
 - 半導体の基礎知識
 - 半導体の工場のプロセスの内容
 - もっとコンピュータの動作原理を知りたい!
 - 最近、自作CPUが流行っているらしい
 - どうやらコンパイラレベルさえ隠蔽されてしまったためかより原理的なところへの回帰が起こっている

日の丸半導体の復権なるか 北海道の「ラピダス」新工場、 急ピッチで建設

次世代半導体の国産化を目指すラビダスが、北海道千歳市での新工場建設を急ピッチで進めている。

集積地とする構想も浮上し、地元は沸く。量産までの総投資額は5兆円で、経済産業省の補助 金はすでに1兆円近くに達した。国主導の産業振興の新たなモデルケースとなるか、注目され ている。

44個のロジックICを使った「自作CPU組み立て キット」が明日発売

2023.03.02 12:20 更新

2023.03.02 取材

組み立ては5~6時間?CPUの構造が学べる"歯ごたえのある"工作キット

ロジックICで動作する自作CPUの組み立てキット「ロジックICで創る自作CPU組み立てキットTTM8」がビット・トレード・ワンから3月3日に発売。Shigezoneにて実機展示と予約販売が始まっている。なお同店では発売記念特価として、キットのみを税込27,500円、解説書籍同梱版を税込29,500円で販売(3月3日以降予告なく終了)する。

測定会&お渡し会

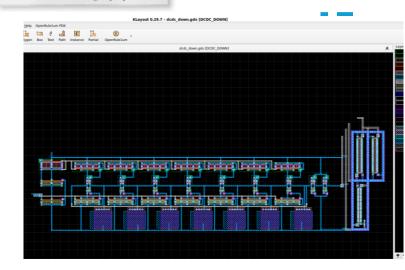
チーム投稿

- 内容
 - 一つのテーマ(回路)を複数人で作成してもらう
 - ・リーダー
 - 中級者や上級者でチームをリードしてもらう
 - メンバー
 - 初心者がリーダーに教えてもらいながら設計やレイアウトをする

- 目的
 - ・リーダー
 - ソフトウェアやハードウェアの企業が自社チップを作成しようとするときの橋渡し人材としての能力を獲得してもらう
 - メンバー
 - ソロは中級者以上じゃないと難しいが、ISHI会は初級者がメイン層であるため、極力、多くの人に参加してもらいたいため。
 - 今までソロで募ってもほぼ募集が無かった

例:東海理化シャトル

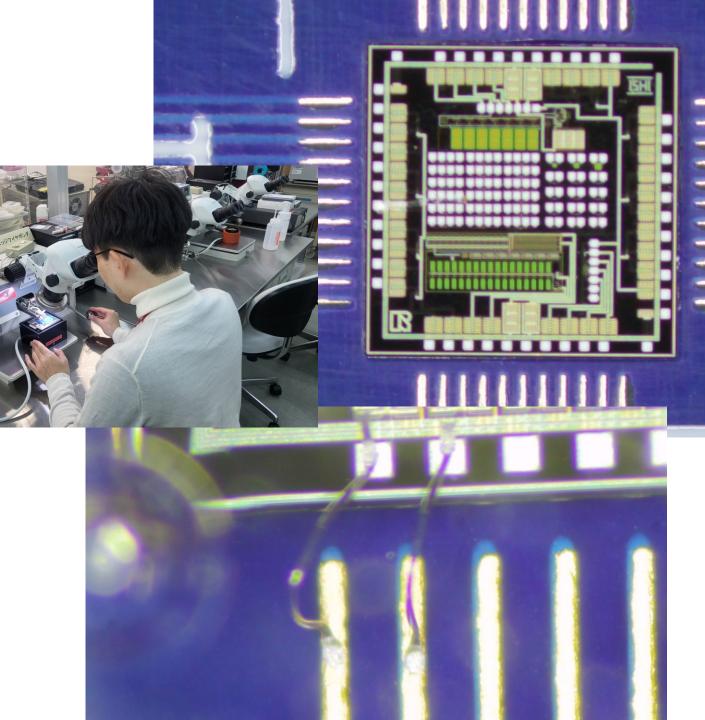
- 実施内容
 - 昇圧型と降圧型の2種類を「2チーム」で作成する
 - 5V->12V, 12V->5Vとする
 - Chipathon2024の変形パターン
- 決まっているルール
 - OpenRule1umを利用する
 - https://github.com/ishi-kai/OpenRule1umPDK_setupEDA
 - テープアウトは「11月24日」
 - Maxサイズは「1000um(1mm) x 1000um(1mm)」
 - ピン数は「7ピン」
 - VDD, 入力電圧用ピン, 出力電圧用ピン の 3ピンは必須
 - 後の4ピンをどう使うかは自由
 - VSSは共通のものを利用してもよいため、数に入れなくてもよい

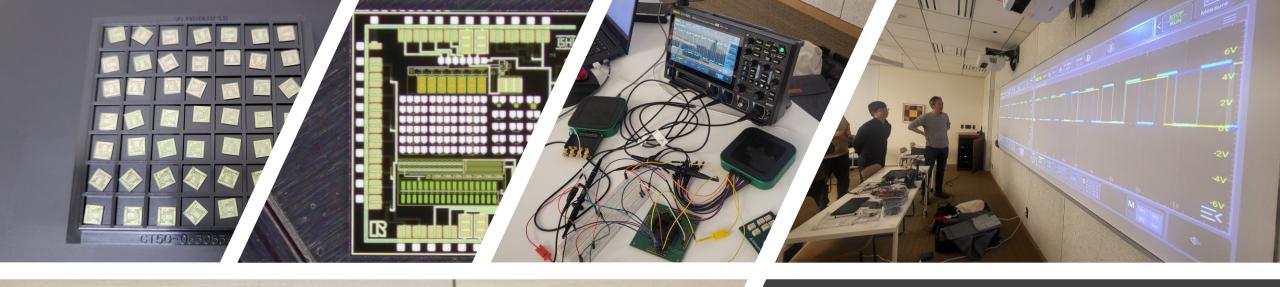

Aiming Leading edge for harmony technology for between people materializing safety and cars **B** TOKAI RIK Highly advanced technology, A world of engineering expanding leading the way to the future

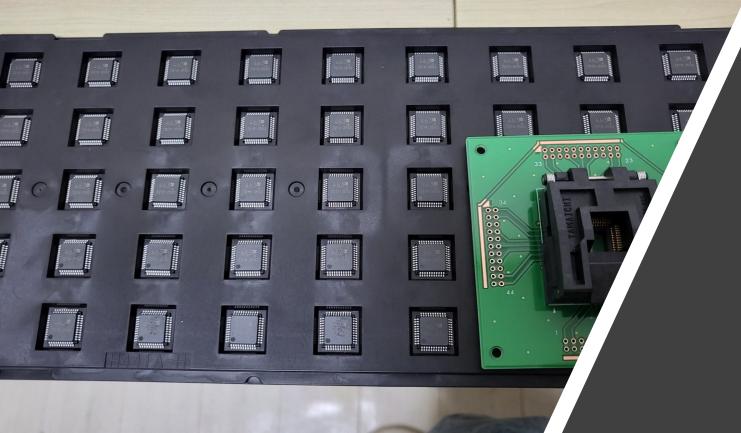
into prevention safety from previous

motion of minimizing injury

Some technologies

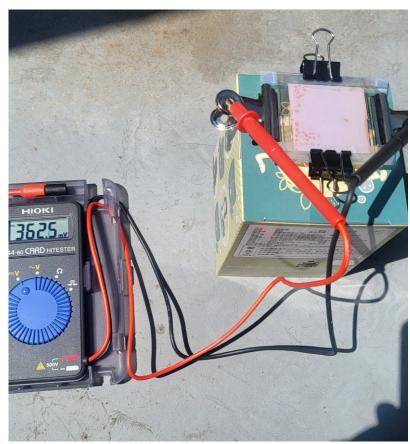

enter the realm of myth





B80674ASG106

東海理化のチップ

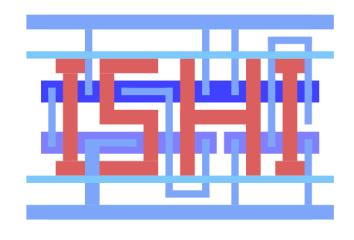

有機半導体ハンズオン

色素増刊太陽光パネルハンズオン

同人誌

- 目標
 - 技術系コミュニティで流行っている技術 系同人誌即売会
- 初心者向け
 - 半導体の解説からインバータ設計
- 中級者向け
 - OPAMPの解説・設計

☐ README


インバータ編(1巻目)

- 1. はじめに
- 2. 環境セットアップ
- 3. PMOSとNMOS (登場素子はPMOSとNMOSだけ!)
 - i. オン抵抗の話(説明だけ)
- 4. xschemで回路図を作ろう
 - i. 使い方:ショートカットなど(参考)
- 5. xschemで評価しよう
 - i. 解析の種類紹介(参考)
 - ii. やってみよう
- 6. klayoutでチップレイアウトを作ろう
 - i. PMOSとNMOSの構造 (断面図) (参考)
 - ii. レイヤーの説明 (Sky130A)
 - iii. PMOSを置いてみよう
 - iv. NMOSを置いてみよう
 - v. 配線してみよう (3次元的にこんなふうになるよーって見せたい)
 - a. https://github.com/TinyTapeout/sky130B-cells-gltf
 - b. sky130bのインバータのgdsファイルとか: https://github.com/google/skywater-pdk-libs-sky130_fd_sc_hd/tree/main/cells/inv
 - c. インバータの3次元ビューア: https://gds-viewer.tinytapeout.com/?
 model=https://tinytapeout.github.io/sky130B-cells-gltf/cells/sky130_fd_sc_hd_inv_1.gds
 - vi. DRCにかけてみよう
- 7. チップレイアウトを評価しよう
 - i. klayoutでLVS

ISHI会の情報

- メンバー数
 - 500名Over (20-30名ほど常にアクティブ)
- ホームページ
 - https://ishi-kai.org/
 - Discord上で活動中
 - O https://discord.gg/RwAWF5mZSR
- イベント告知(勉強会など)
 - https://ishikai.connpass.com/
 - 20~50名ほどが常時参加

今日のお題

イベント参加報告

- 講演系
 - 第7回オープンソースEDAフォーラム
 - ICD夏の合宿
 - 第2回九州半導体産業展
- ハンズオン系
 - NT東京、NTふくい、NT名古屋(太陽光パネルハンズオン)
 - インバータ回路、OPAMP回路、1bit-CPU
 - 九州大学(連携教育コース)

実施したシャトル

- フェニテックシャトル
 - インバータ回路ハンズオン
 - OPAMP回路グループワーク
- ・東海理化シャトル
 - インバータ回路ハンズオン
 - OPAMP回路ハンズオン
 - 1bit-CPUハンズオン

ハンズオン (製作中含む)

- 実施済み
 - インバータ回路
 - 目的:EDAツールの使い方の学習
 - https://github.com/ishikai/OpenRule1umPDK_setupEDA/blob/main/docs/inverter _TR10_V1.pdf
 - https://github.com/ishi-kai/OpenRule1umPDK_setupEDA
 - OPAMP回路
 - 目的:アナログ回路の基礎の学習(基本回路や設計手法)
 - https://github.com/ishi-kai/openmpw-transistor-level-examples/tree/main/TR10/opamp
 - 1bit-CPU
 - 目的:論理回路とスタンダードセルとVerilogの関係性の学習
 - https://github.com/ishi-kai/openmpw-transistor-level-examples/tree/main/TR10/1bit-CPU
- 製作中
 - ADC回路
 - 目的:アナデジ混載回路とばらつきの影響の学習
 - VCO回路
 - 目的:PEXやコーナー解析などのシミュレーションの重要性の学習
- 検討中
 - BGR/CS回路(基準系の回路)
 - 目的:アナログ回路の基礎の学習

今後の予定

- 書籍化
 - IO誌に連載していた内容を再編集+加筆したもの
 - インバータ回路の次へ進みたい人の道しるべとなるような内容
- オープンPDKのTinyTapeout化
 - Webベースのツールでも利用可能にするプロジェクト
 - AI対応などするにも重要となる
 - スクラッチからの実装予定
 - リファレンスマニュアルから実装していく形

ISHI会の課題

- インバータで終わる人が多い
 - インバータ回路の次へ進む「きっかけ」として良い題材やハンズオン
 - 執筆予定の書籍も仕込みの一つ
 - 解説・勉強系イベント (またはもくもく会)
 - EDAツール(xschemやklayout)、PDK、アナログ回路やデジタル回路など
 - 勉強のために講師などやる人いませんか?
- 実質的にシャトルが年1回
 - 1年の間が空いてしまうのがキツい・・・
 - TinyTapeoutで11月や3月にテープアウトできるとよい
 - デジタル:4~5万円、アナログ:8万円で1チップが鬼門
 - オープンPDKのTinyTapeout化も仕込みの一つ