オープンソース半導体を研究ツールとして利用しよう!

ONIC2025/BoF

今村謙之 (Noritsuna Imamura) @ ISHI会 noritsuna@ishi-kai.org

本講演のターゲット層

省電力、省スペースに悩んでいる方

- 市販のICを用いた基板設計に限界を感じている
 - 自作半導体 (AISC/LSI/IC) が作りたい!

処理速度不足に悩んでいる方

- FPGAでの処理に限界を感じている
 - 自作半導体(ASCI/LSI/IC)が作りたい!

半導体 (ASIC/LSI/IC) の製造に興味のある初心者

どんなものでもよいのでオレオレ半導体を作ってみたい方

アジェンダ

- オープンソース半導体とは?
- 知りたいことは?
- どうやって作るの?
- 初心者向け教材

オープンソース半導体とは?

オープンソース半導体 ~OpenMPWとは?~

- 1. オープンソースの設計ツール(OpenEDA)にて設計。設計環境やスクリプトを公開することが可能であること、第三者による検証・改良・複製により、コミュニティにて共有できること。
- 2. オープンソースのプロセス情報 (OpenPDK)にて設計。設計資産 (回路図・GDSII)やソースファイルを公開することが可能であること、第三者による検証・改良・複製により、コミュニティにて共有できること。
- 3. 上記1、2で設計したオープンソース設計チップを製造するファブ・サービスが存在し、設計したハードウェアの動作を検証できること。

なぜ今オープンソース半導体なのか?

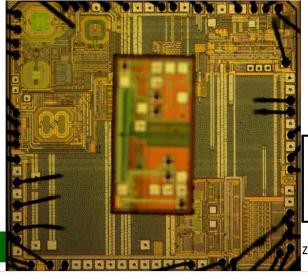
- 半導体設計教育の危機
 - 電気電子課程への進学者の減少。教科書売上減少。VLSI教育にかかるソフトウェアのコスト高。EDAサーバーの保守・更新にかかる経費増等、教育側のコスト負荷が大きすぎる。
- 半導体産業の衰退 = 経済と安全保障において国家的な脅威
 - 偽造電子機器は、数十億ドル規模の闇市場が存在し、米国国防総省が購入する予備電子部品の推定 15% が偽造品であり、信頼性と安全性の両方を脅かしていると報告されている
 - →半導体人材育成が喫緊の課題。
- チップ設計者の作業効率向上
 - オープンソース化より、ハードウェア設計は多くの恩恵をオープンソースソフトウェアと同様に受けることができる。

オープンソース半導体・タイムライン

- 2018:DARPA(国防高等研究計画局)OpenIDEA プログラム
- \$11.3M grant to UC San Diego for "OpenROAD" project
- 2020: Google/efabless/SkyWater OpenMPW プログラムスタート
- 2022: Global Foundries が OpenMPW プログラムに参加
- 2023:独) iHP (130nm/SiGe) が PDK のオープン化を宣言
- Free Silicon Fundation (FSI) が、欧州の半導体産業の競争力、革新性、教育、
- 独立性、サイバー耐性、環境持続可能性などに貢献できると主張
- 2023:Open PDKの管理を Chips Alliance がサポート
- 2024:各ファブがOpenPDKよるシャトルを開始

・日本での動き

- 2023年:ロジックリサーチ社の主催でオープンソースEDAフォーラムが開催される
 - 2023年6月:第三回よりハイブリット開催
 - 2024年7月:オープンソースEDA研究会として始動
- 2023年5月:滋賀県立大学の土谷先生主導でコミュニティー:ISHI会が発足
 - 2023年12月:ISHI会主導でOpenMPW GF-1にグループ投稿
 - 2023-2024年: IEEE SSCSのChipathon2023に土谷先生や熊本大学の久保木先生がリーダーとなって、日本チームを結成して投稿
 - 2024年5月:2014年より金沢大学の秋田先生が主導してたMakeLSI:がISHI会に合流して、統合された
- 2024年5月:産総研主導で産業界団体:OpenSUSIが発足
 - https://www.nikkei.com/article/DGXZQOUC228690S4A420C2000000/

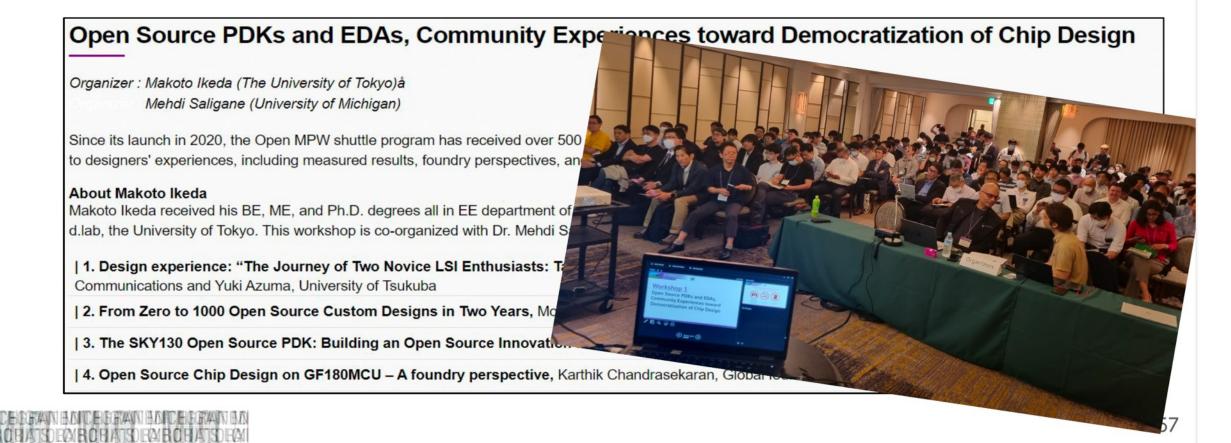

中国がアソい!

- 中国には3000社以上の半導体メーカ(大半はファブレス=設計専業)最先端SoCから安価な互換IC、ディスクリート半導体まで、企業の幅は非常に広い
- 世界中から中古の半導体製造装置 を買い漁っている!

 PCB基板製造で起きた流れが来

 ている!

☑少量多品種のSoC/SiP市場が成立している


一般に半導体は 初期コストが非常に高いので 少量多品種に向かない産業

Bluetoothイヤホン専用SoC 空間オーディオDSP、LiPo充電、 タッチ検出など必要機能が一式 (65nmプロセス、別フラッシュのSiP)

写真提供:高須正和氏

zawa University http://ifdl.jp/

180 Attendees!! Record attendance among all workshops at VLSI Symposium

ISHI会とは?

ISHI会とは?

- オープン化(民主化)されたISHI=石=Silicon=半導体(ASIC/LSI/IC)を扱い、いろいろな分野を繋げていくソサエティー・コミュニティー(会)から発想されたネーミングです。
- その先駆けとして登場したOpenMPW(Open Multi Project Wafer)は、Google社がEfabless社に出

半導体の設計・製造したことない人たちを 支えるコミュニティー

起こすという方針で、他分野向けの超初心者向けハンズオンセミナーや専門家向けの濃い内容の勉強会などのイベントを開催したり、チームを作ってOpenMPWシャトルや世界のChipathonに挑戦したり、Maker Faireなどのイベントへの参加をしていきたいと思いますので、よろしくお願いいたします。

ISHI会グランドデザイン

新規分野を開拓したいけ どどうすればよいのかわ からない

「みんなの経験をチップに!」

ASIC(LSI)化したい けど情報がない

ASIC(LSI)業界の現状 (閉塞感)

- NDAでなにもしゃべれない
- 最先端は札束の応酬
 - 若者が入ってこない

他業界の現状(限界感)

- 高速・小型・省電力の要求
 - 汎用チップ+ソフトでは限

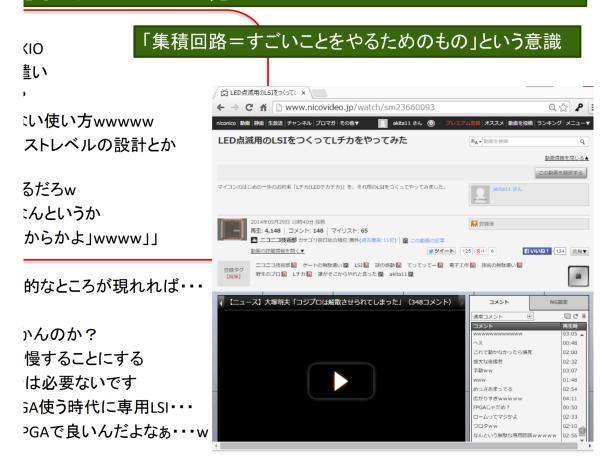
すべてがオープン!

OpenMPWの登場!®

コミュニティーの意義

- 成果の再利用が可能。Do It With Others(それ、みんなでやってみよう)の精神
- 日本の利点:地理的に物理的に集まりやすく、勉強会や合宿をやりやすい

ISHI会の意義

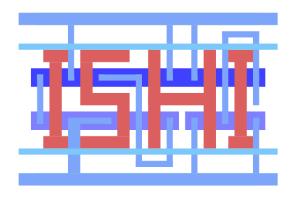

○ 他(多)分野の知識の統合により、今までになかった研究・開発への期待

「やったことがある」を作る

オープンソース半導体でも「Make:ムーブメント (オープンハードウェア)」レベルのビック ウェーブを起こすため

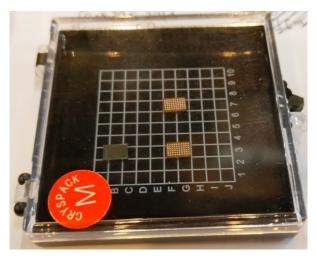
- Make:時代に立ち上がった企業
 - ハードウェアとは無縁のソフトウェア企業などの中から「社内Make:開発部」みたいなのが立ち上がり、そこから派生した
 - 「どこで知識を身に着けてきたか?」
 - Make:の流れの中にあるオープン ハードウェア
 - 「ある程度まとまった数の技術者が生まれた」
 - ハードウェアを絡めた事業がどこ の会社でも出来るようになった
 - 「事業として成功させる」
 - 「参入したい側の業界・業務知識 と半導体業界の業界・業務知識の 両方を持った仲介者」が必要

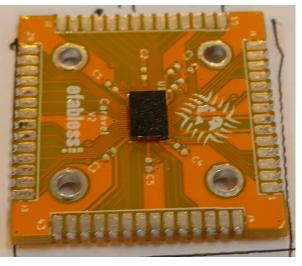
カ画:ニコ動でのコメント



ce Device Laboratory, Kanazawa University http://ifdl.jp/

活動場所

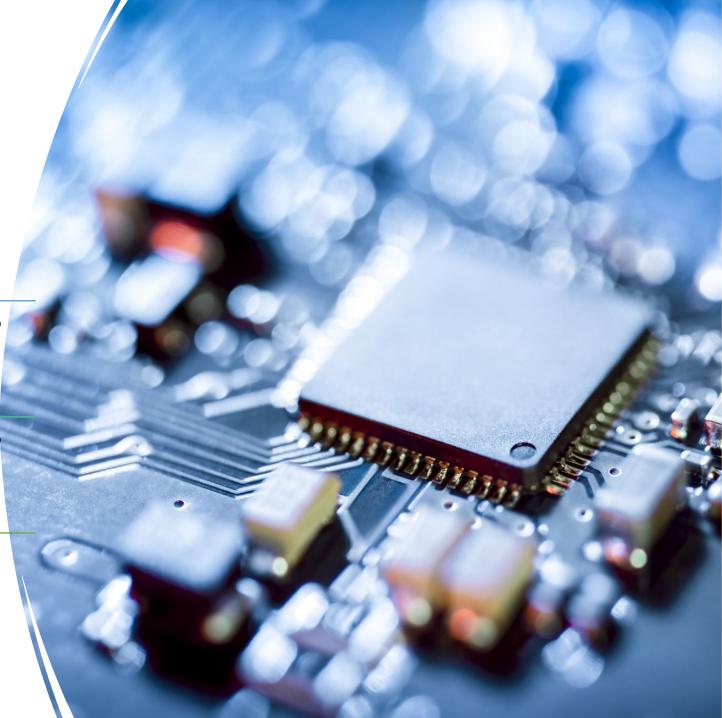

- ・ホームページ
 - Github pages
 - https://ishi-kai.org/
- Discord上で活動中
 - https://discord.gg/RwAWF5mZSR
- イベント告知(勉強会など)
 - connpass
 - https://ishikai.connpass.com/



知りたいことは?

その前に・・・

作りたいのはこれですよね?


知りたいことは?

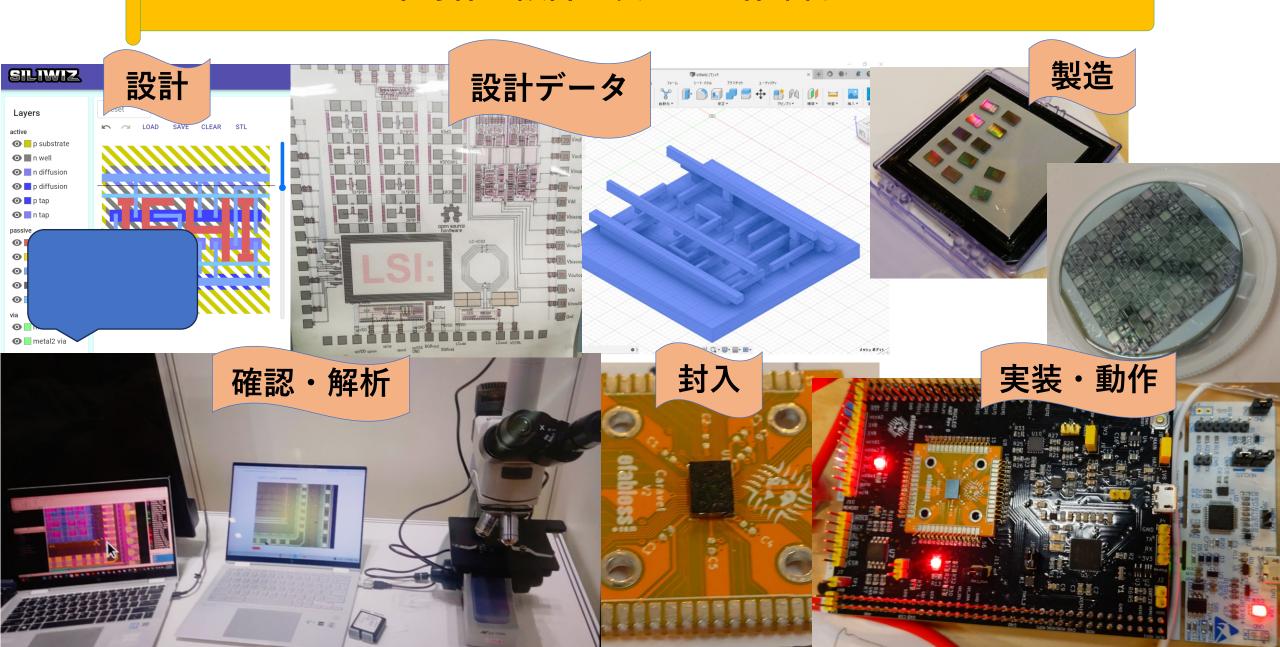
知りたいのはこれらですよね?

どんな機能の半導体が作れるのか?

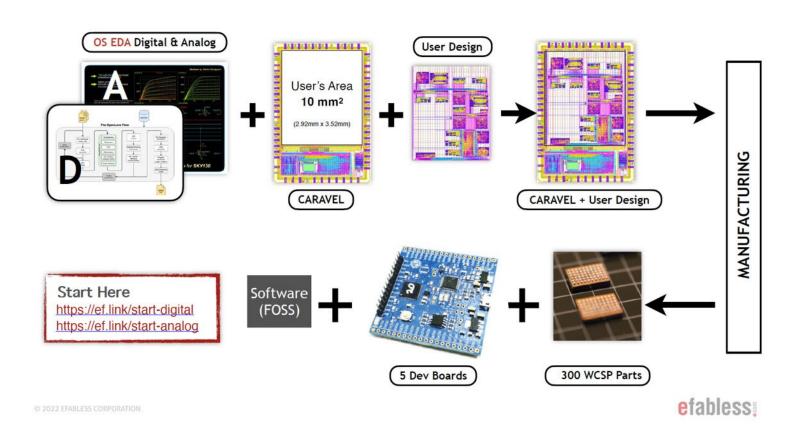
どうやったら半導体が作れるのか?

それが自分でもできるのか?

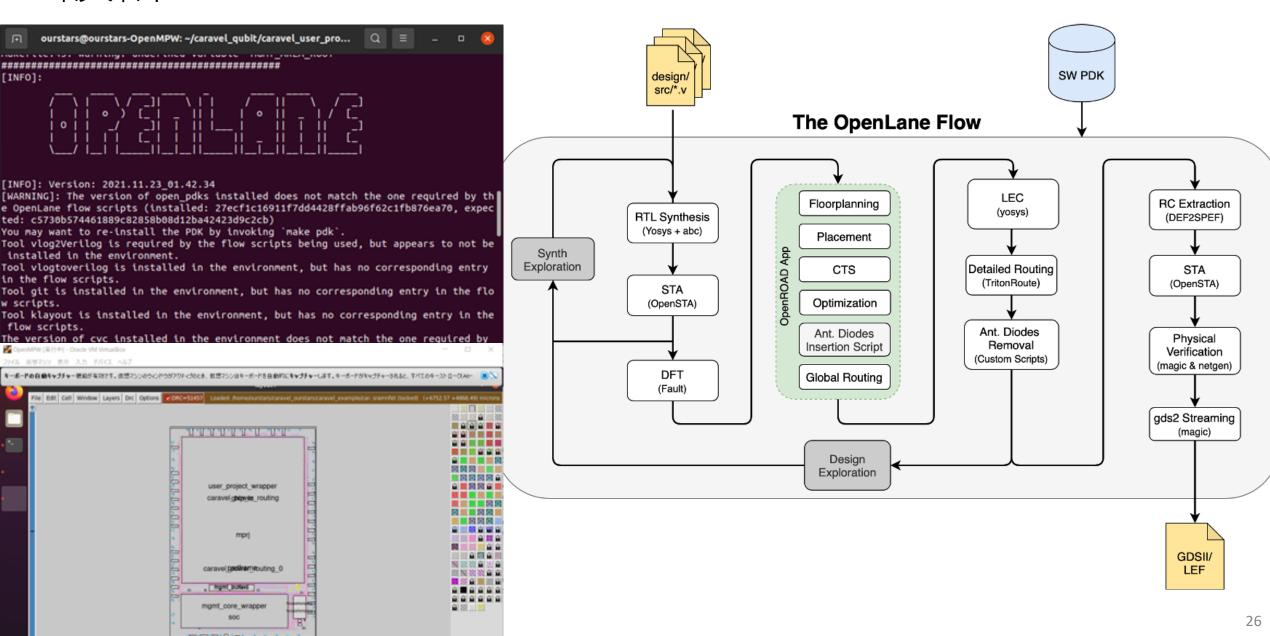
(デジタル)

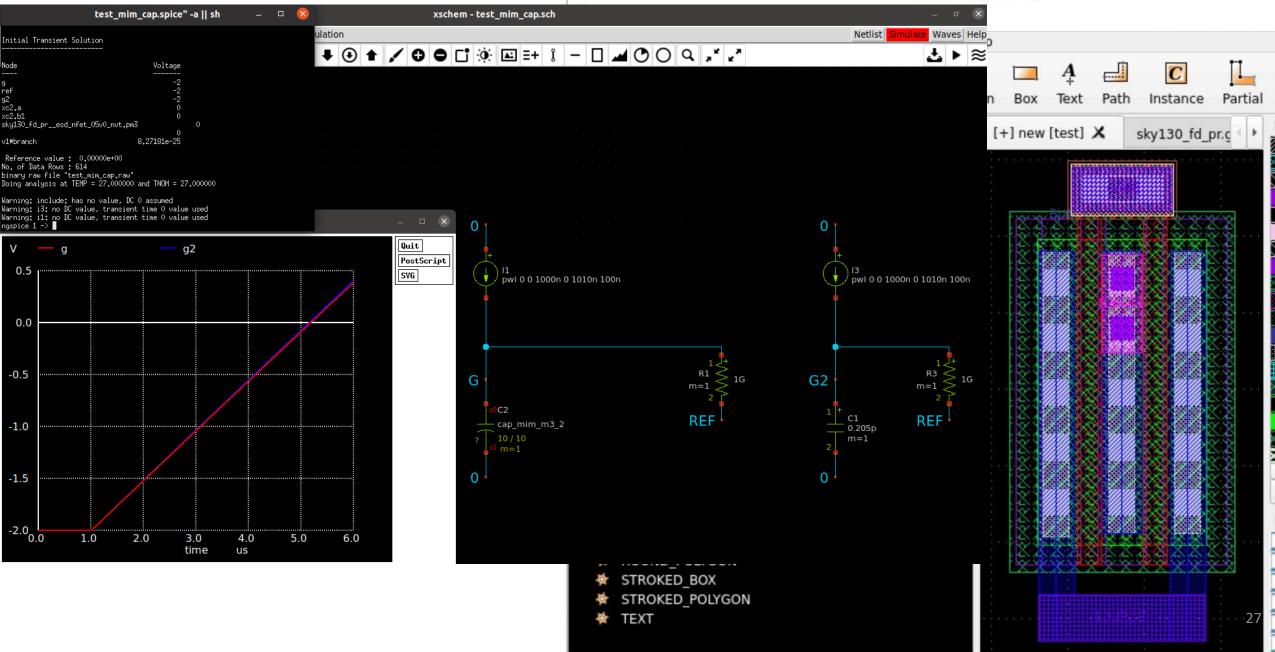

- オープンソースで提供されている命令セット アーキテクチャ(ISA)
 - ・オープンソースであり、誰もが使え、ライ センス料が無料、契約の必要なし
 - ・拡張性が高く、必要な命令だけを選択して 実装できる
 - 多様性があり、様々な用途やアプリケーションに対応できる

AnalogDiscovery2 (アナログ)

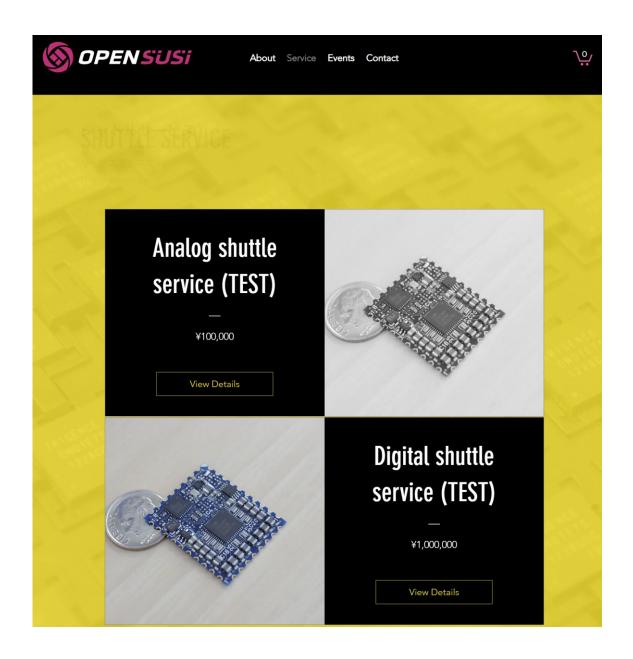

- 2chオシロスコープ (14bit, 100 MSa/s)
- 2ch 任意波形発生器 (14bit, 100 MSa/s)
- 16chパターンジェネレータ (100 MSa/s)
- 16ch 仮想デジタルIO
- ・ 16chロジックアナライザ
- ・ 2入力/出力デジタルトリガ
- 2出力プログラマブル電源 (5 V, 2.1 W)
- ・ 電圧計 (AC/DC)
- ・ネットワークアナライザ (10 MHz)
- ・スペクトラムアナライザ
- ・バスアナライザ (SPI, I2C, UART, パラレル)

どうやって作るの?


半導体の設計〜製造〜動作確認まで


半導体の設計~製造までのフロー

設計ソール:デジタル



受計ツール:アナログ

オープンソースPDK対応ファブ

シャトル	ChipCreate (米)	Wafer.space (米)	iHP(独)	東海理化 (日)	ICsprout(中)
プロセス	130nm	180nm	130nm	1000nm	55nm
サイズ	10mm^2 (3.1mm x 3.2mm)	20mm^2 (3.99mm x 5.07mm)	2mm^2 (1.4mm x 1.4mm)	10mm^2 (3.5mm x 3.5mm)	1mm^2 (最低サイズ)
価格	\$15,000	\$8,000	無料	約80万円	約20万円/1block
定期シャトル回数	年 3 回 (3,9,11月)	不定期	年 4 回 (3,6,9,11月) 試作のみ	年2回 (5,10月)	不明

発注 どうする?

初心者向け教材:デジタル

必要な知識は?

- コンピュータサイエンス
 - デジタル回路
 - VerilogやHDLの言語知識
 - コンピュータアーキテクチャ

VLSI.JP

To Article Index

- 無から始める自作CPU
 - 。 必要な物
 - ディジタル回路とVerilog入門
 - コンピュータアーキテクチャ入門
 - この次へ
 - RISC-V CPUを作る
 - 半導体を作る
 - コンパイラを作る
 - OSを作る
 - o <u>謝辞</u>

クレイジーピエロ 著

無から始める自作CPU

CPUは作れる!!!!!!!ご存知でしたか!!!?????

CPU、それは我々が暮らす情報社会の基盤となる魔法の石です。

世に存在する全てのソフトウェア、例えばゲーム、AI、Webサーバ、OS、これらは全てCPUが無ければ動きませんし、今や車や飛行機、家電にも全てCPUが入っている時代です。

そんな誰もがCPUに依存している時代にも関わらず、CPUについて理解を持っている人間は余りにも僅か、というのが現状です。

そんな今こそCPUを作りましょう。

CPUを作り、完全に理解する事で、CPUによって成り立つ技術を学ぶ上での、揺るぎない自信と確証を身につける事が出来るでしょう。

本記事ではCPUという究極のブラックボックスに光を当て、半導体やプログラミングの知識が無の状態から、CPUを作る事を目標としています。

VLSI.JP

To Article Index

- ディジタル回路とVerilog入門
 - 基礎知識
 - CPU
 - 二進数と16進数
 - 二進数
 - 16進数
 - 二進数の負の数
 - ディジタル回路
 - ディジタル回路が扱う値
 - NOT
 - OR
 - AND
 - NAND
 - XOR
 - MUX
 - HalfAdder
 - FullAdder
 - D-FF
 - MUXによるD-FFの改良
 - FPGA
 - Verilog HDL入門
 - 開発の流れ
 - 開発環境構築
 - テキストエディタのインストール
 - <u>Verilog HDLシミュレータのインスト</u> ール
 - 開発環境に慣れる

ディジタル回路とVerilog入門

ディジタル回路とVerilog入門では、CPUを作る前に必要な基礎知識、そして作るために必要な道具の使い方を学んでいきます。

基礎知識

ここではCPUを作るのに必要な知識を説明します。覚える必要はありません。

CPU

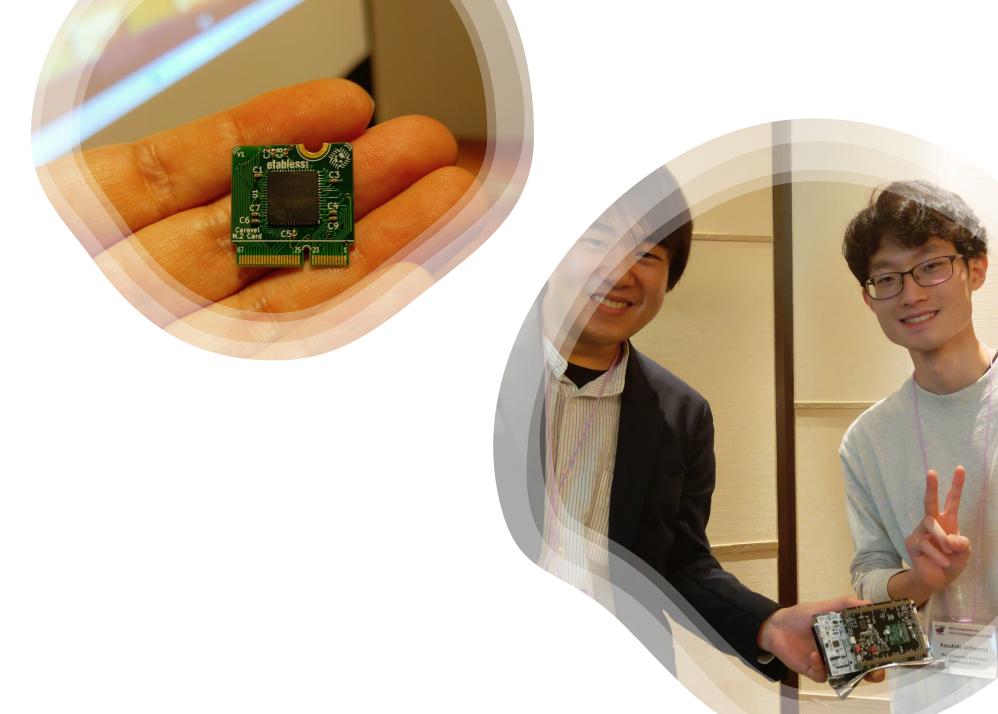
CPU、我々が作る対象です。CPUはとは一体なんでしょうか?概要すら知らないのに作ろうとするのは流石に無謀と言えます。ちょっとだけ先に知っておきましょう。

プログラミングという単語は皆さん人生のどこかで聞いたことがあるでしょう。最近の中高生はプログラミングの授業があるんですかね、気の毒ですね。プログラミング、プログラムを書いてゲームを作ったりモーターを動かしたりするアレですね。あなたがこの記事を読んでいるSafariやChromeもプログラムですし、YoutubeもTwitterもInstagramもプログラムです。ああ素晴らしきかなプログラム。プログラムが無ければお前は生きてはいけません。

```
#include <stdio.h>
int main(){
    printf("Hello World!\n");
```

- コンピュータアーキテクチャ入門
 - プログラムが動く流れ
 - o 命令セットアーキテクチャ
 - Z16の概要
 - Z16のレジスタ
 - Z16の命令
 - 演算命令
 - ADD
 - SUB
 - MUL
 - DIV
 - OR
 - AND
 - XOR
 - SLL
 - SRL
 - 演算命令まとめ
 - 即値命令
 - ADDI
 - 即値命令まとめ
 - メモリ命令
 - LOAD
 - STORE
 - メモリ命令まとめ
 - ジャンプ命令
 - JAL
 - JRL
 - ジャンプ命令まとめ
 - 分岐命令
 - BEQ

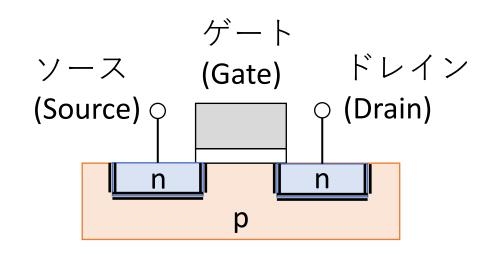
コンピュータアーキテクチャ入門


さあ始めましょう

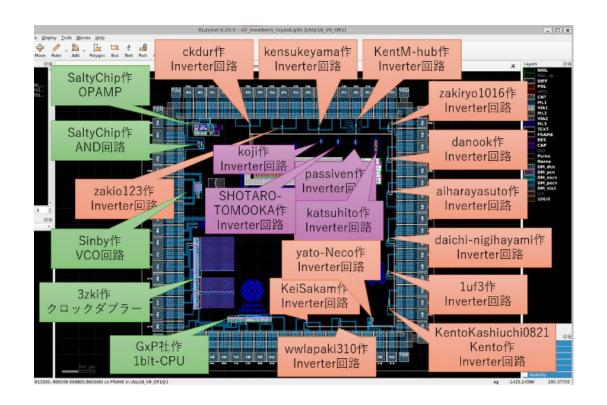
プログラムが動く流れ

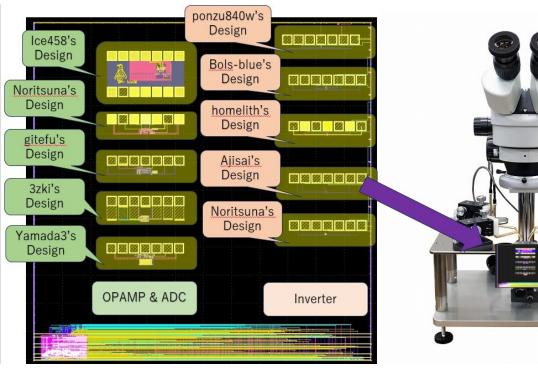
CPUはプログラムをどのように実行しているのでしょうか? CPUはプログラムを動かす物体ですので、一度ここで学んでおきましょう。

CPUはプログラムをそのまま実行している訳ではありません。


8bit CPU

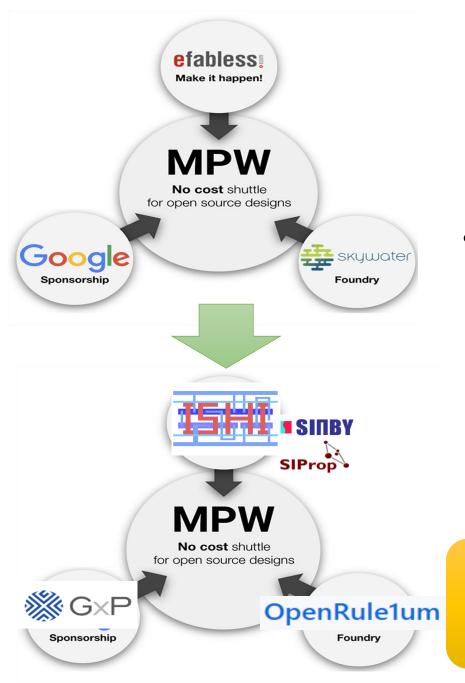
初心者向け教材:アナログ


• トランジスタ設計

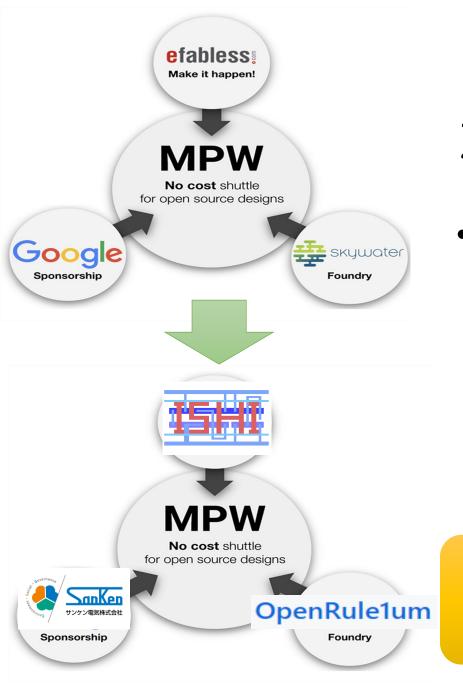


画面構成 (Simulation)

右ペインの SILIWIZ 切り替えボタン CROSS SECTION & DRC 🗸 SIMULATION Preset Layers SAVE CLEAR active o p substrate n well o n diffusion o p diffusion o p tap o n tap passive o polysilicon polyres metal1 20µ mim capacitor metal2 Plot signals: metal1 via Input voltage: metal2 via Min: 0V Max: Pulse delay: ⊃0μs Rise time: **●** 50µs 描画 **●** 60µs Time scale: Show SPICE (advanced)

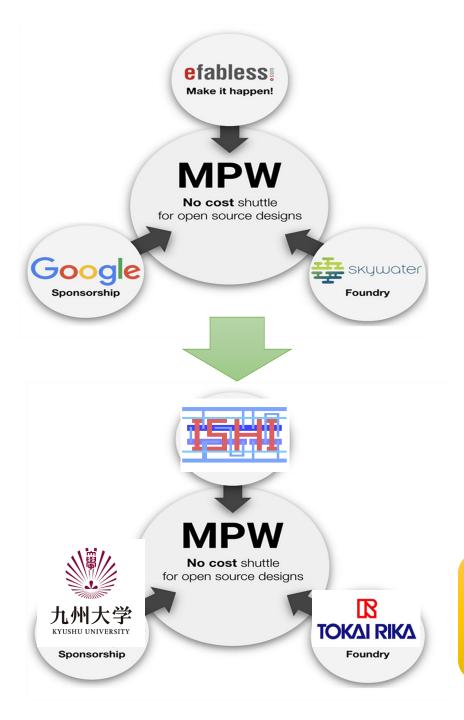

40

シャトル相乗り


- オープンソースEDA&PDKとフリーシャトル
 - 誰でも参加可能
 - デザインの共有が可能
 - シャトルにさらに相乗りすることが可能
- 複数人によるシャトルの相乗りサポート
 - インバータ回路を一日で回路設計~レイアウトまで行うハンズオン

日本発のOpenMPW!

- OpenMPW構造のシャトル
 - コミュニティー
 - eFabless社 ⇔ ISHI会+SINBY+SIProp
 - ・スポンサー
 - Google社 ⇔ GxP社
 - ファブ:
 - SkywaterPDK
 ⇔ OpenRule1umPDK

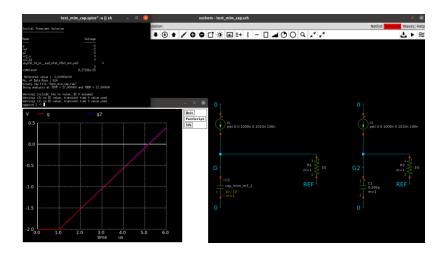

ISHI会版OpenMPW-PTC06-1として開催!

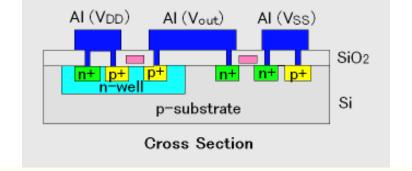
2025年のOpenMPW!

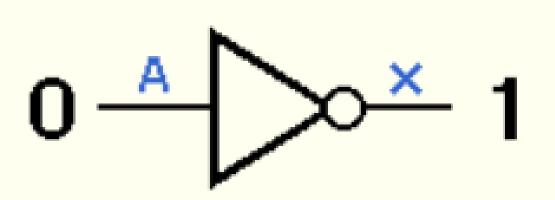
- OpenMPW構造のシャトル
 - コミュニティー
 - eFabless社 ⇔ ISHI会
 - ・スポンサー
 - Google社 ⇔ サンケン電気社
 - ファブ:
 - SkywaterPDK
 ⇔ OpenRule1umPDK

ISHI会版OpenMPW-PTC06-2として開催!

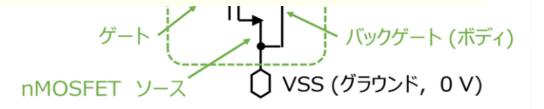

2025年のOpenMPW!

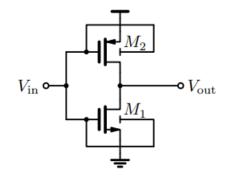

- OpenMPW構造のシャトル
 - ・コミュニティー
 - eFabless社 ⇔ ISHI会
 - ・スポンサー
 - Google社 ⇔ 九州大学
 - ファブ:


ISHI会版OpenMPW-TR10-2として開催!


ハンズオンセミナー

- 知識ゼロから半導体設計の基礎がすべて学べる!
 - 一番簡単なインバーター回路のハンズオンセミナー
 - Xschemによる回路設計
 - トランジスタの組み合わせで機能を実現する作業
 - ngspiceによる回路特性シミュレーション
 - 上記の回路が正しく動作するかを検証する作業
 - klayoutによる回路デザイン
 - トランジスタを実際の半導体の上に配置する作業
 - 丸々1日の講習会となります
 - 講習会実施実績
 - https://ishikai.connpass.com/event/303102/
 - https://www.noritsuna.jp/download/ishi 20231110 3zki ver2.pdf
 - 参加者の声(半導体設計未経験者。電子工作をしたことがあるレベル)
 - チップの設計体験によりすごく技術的な刺激を受けた
 - 半導体は全く未知のものだったが理解できたことで新しい知見を得る ことが出来た





でも・・基本なんです!~アナログ回路として~

pM(

s of Two-Transistor Circuits: versatility of MOSFETs

r, IEEE, and Matthias Eberlein, Member, IEEE

IN (信·

nM(

Fig. 2. The DTMOS inverter achieves an improved current drive at low leakage current. It needs to be operated at low supply voltages to avoid a forward bias of the well diodes [5].

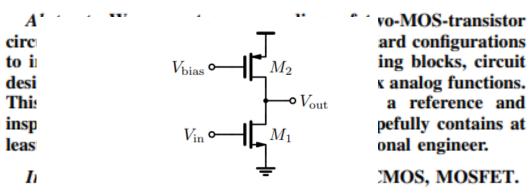


Fig. 10. The common-source amplifier with active load.

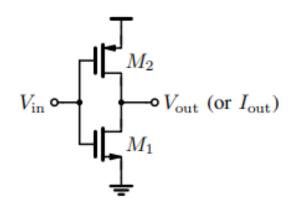
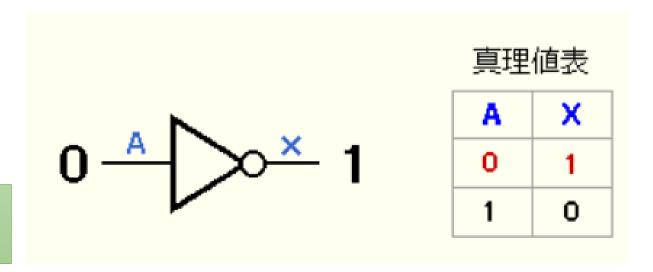
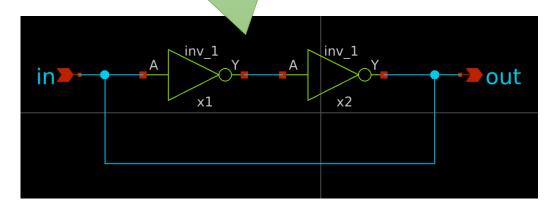
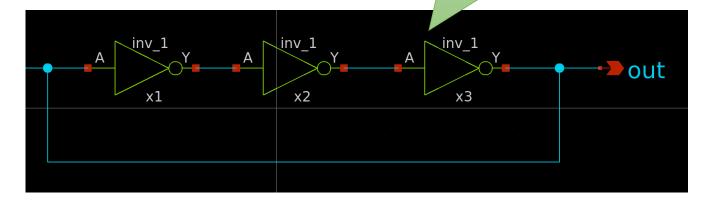




Fig. 1. The ubiquitous digital inverter. The input voltage $V_{\rm in}$ switches one of both transistors on, and the other is off [4].


でも・・基本なんです!~デジタル回路として~

クロック生成回路

SRAM 1bitの回路

集積回路設計・評価ハンズオン

九州地域では、TSMC/JASMをはじめとする半導体製造メーカの集積か での半導体エコシステム構築が始まっています。しかし、その中核を担う設し が問題となっています。そこで九州大学価値創造型半導体人材育成センター ため、半導体の設計から評価までの技術を一気通貫で習得できるセミナーをは

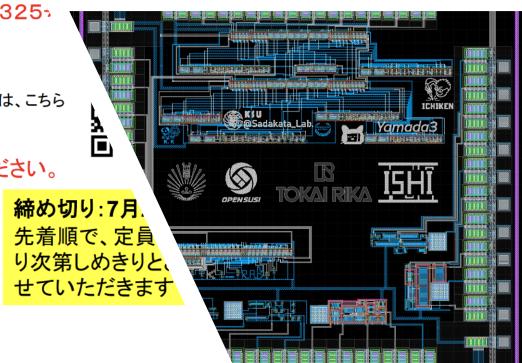
内容:CMOS集積回路(Inverter)をOpen Toolにより設計し、レイアウトします。各 海理化のシャトルサービスにより試作します。また、出来上がったICチップを測定し チップは持ち帰ることができます。

日時場所:設計ハンズオンセミナー: 2025年9月24日~25日、九州大学 W2-325-ICチップお渡し会&評価実習: 2026年3月(未定)、九州大学内

※ 9月、3月の2回で1つのセミナーです。WindowsノートPCが必要です。

または、こちら

申込み方法:・【件名】に参加したいセミナーの名称を記入ください。


お名前、お名前(ローマ時)、ご所属、メールアドレス をお知らせください。

申し込み先: class_program-at-ecsvc.ed.kyushu-u.ac.jp -at- =@

ご協力: OPEN SUSI, ISHI-KAI, AIST solutions、株式会社東海理化

ハンズオンセミナー: ターゲット

- 初めての「半導体設計を体験してもらう」ことが目的
 - ソフトウェアやハードウェアの企業内に半導体設計 者を増やす
- 参加者のモチベーション
 - 半導体って話をよく聞くようになったので、具体的 に知りたい!
 - 半導体の基礎知識
 - 半導体の工場のプロセスの内容
 - もっとコンピュータの動作原理を知りたい!
 - 最近、自作CPUが流行っているらしい
 - どうやらコンパイラレベルさえ隠蔽されてしまったためかより原理的なところへの回帰が起こっている

日の丸半導体の復権なるか 北海道の「ラピダス」新工場、 急ピッチで建設

次世代半導体の国産化を目指すラビダスが、北海道千歳市での新工場建設を急ビッチで進めている。

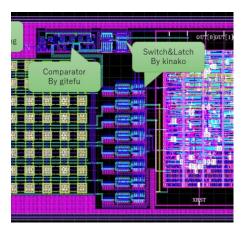
場建設を急ピッチで進めている。工場を起点に北海道を半導体産業の 集積地とする構想も浮上し、地元は湧く。量産までの総投資額は5兆円で、経済産業省の補助 金はすでに1兆円近くに達した。国主導の産業振興の新たなモデルケースとなるか、注目され アいる

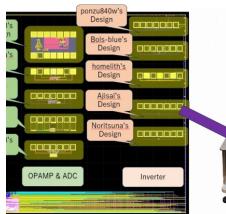
44個のロジックICを使った「自作CPU組み立て キット」が明日発売

2023.03.02 12:20 更新

2023.03.02 取材

ピット・トレード・ワン

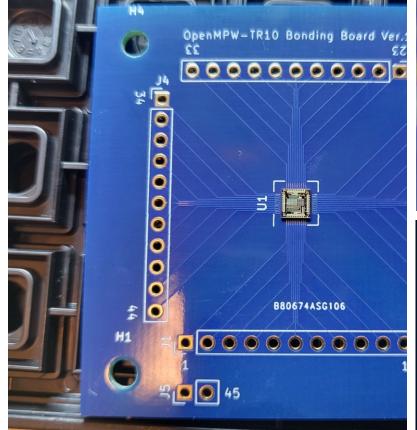


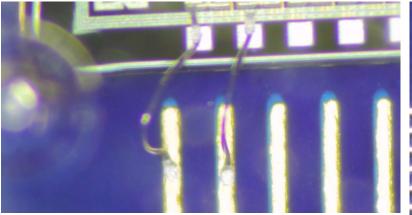

組み立ては5~6時間?CPUの構造が学べる"歯ごたえのある"工作キット

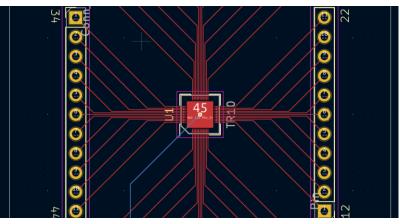
ロジックICで動作する自作CPUの組み立てキット「ロジックICで配る自作CPU組み立てキットTTM8」がビット・トレード・ワンから3月3日に発売。Shigezoneにて実機展示と予約販売が始まっている。なお同店では発売記念特価として、キットのみを税込27,500円、解説書籍同梱版を税込29,500円で販売(3月3日以降予告なく終了)する。

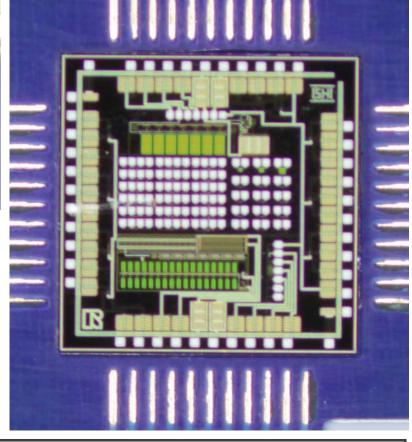
シャトル: ISHI会シェアの実績

- 2023/12
 - OpenMPW GF-1シャトル
 - https://github.com/ishi-kai/ISHI-KAI Multiple Projects OpenGFMPW-1/
- 2024/05
 - Chipathon2023
 - https://github.com/ishi-kai/Chipathon2023 ADC/tree/main/submit version
 - https://github.com/atuchiya/DC23-LTC2/tree/japan-test/TOP
- 2024/08
 - ISHI会版OpenMPW PTC06-1シャトル(フェニテック)
 - https://github.com/ishi-kai/ISHI-KAI Multiple Projects OpenMPW PTC06-1
- 2024/10
 - ISHI会版OpenMPW TR10-1シャトル(東海理化)
 - https://github.com/ishi-kai/ISHI-KAI Multiple Projects OpenMPW TR10-1
- 2024/12
 - ISHI会版OpenMPW MF20-1シャトル(ミニマルファブ)
 - https://github.com/ishi-kai/ISHI-KAI_Multiple_Projects_OpenMPW_MF20-1
- 2025/08
- ISHI会版OpenMPW PTC06-2シャトル(フェニテック)
 - https://github.com/ishi-kai/ISHI-KAI Multiple Projects OpenMPW PTC06-2
- 2024/09
 - ISHI会版OpenMPW TR10-2シャトル(東海理化)
 - https://github.com/ishi-kai/ISHI-KAI_Multiple_Projects_OpenMPW_TR10-2

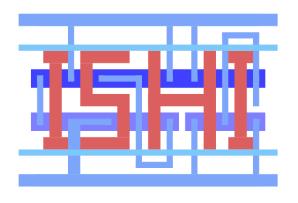








測定会&お渡し会



ボンディング

ご清聴ありがとうございました

- ・ホームページ
 - Github pages
 - https://ishi-kai.org/
- Discord上で活動中
 - https://discord.gg/RwAWF5mZSR
- イベント告知(勉強会など)
 - connpass
 - https://ishikai.connpass.com/

